研究業績

論文・著書一覧

学術論文等

2022年

  1. Synthesis of a Pt/Carbon-Sphere Catalyst and Evaluation of Its Oxygen Reduction Reaction Activity in Acidic Environment, T. Saida, K. Sakakibara, R. Igami, T. Maruyama, Energy & Fuels, 36, 1027-1033 (2022).
  2. Iridium-Catalyzed Single-Walled Carbon Nanotube Synthesis by Alcohol-Gas-Source Method Under Low Ethanol Pressure: Growth Temperature Dependence, D. Yamamoto, S. Karasawa, K. P. Sharma, T. Saida, S. Naritsuka, T. Maruyama, Crystal Research and Technology, 2100226-8 (2022).
  3. Structural Transformation of Pt-Ni Nanowires as Oxygen Reduction Electrocatalysts to Branched Nanostructures during Potential Cycles, M. Kato, Y. Iguchi, T. Li, Y. Kato, Y. Zhuang, K. Higashi, T. Uruga, T. Saida, K. Miyabayashi, I. Yagi, ACS Catalysis, 12, 259-264 (2022).

2021年

  1. Chromogenic Amorphous MoO3x Nanosheets and Their Nanostructured Films for Smart Window Applications, M. Morita, S. Toyoda, H. Kiuchi, T. Abe, K. Kumagai, T. Saida, K. Fukuda, ACS Applied Nano Materials, 4, 8781-8788 (2021).
  2. Osmium catalyzed growth of vertically aligned and small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition, T. Maruyama, D. Yamamoto, M. Kobayashi, K. P. Sharma, T. Saida, S. Naritsuka, Diamond & Related Materials, 117 108501-7 (2021).
  3. Vertically aligned growth of small-diameter single-walled carbon nanotubes on flexible stainless steels by alcohol catalytic chemical vapor deposition with Ir catalyst on alumina buffer layer, S. Kondo, D. Yamamoto, K. P. Sharma, Y. Yaakob, T. Saida, S. Naritsuka, M. Tanemura, T. Maruyama., Japanese Journal of Applied Physics, 60, 128005-5 (2021).

2020年

  1. Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst, T. Maruyama, T. Okada, K. P. Sharma, T. Suzuki, T. Saida, S. Naritsuka, Y. Iizumi, T. Okazaki, S. Iijima, Applied Surface Science, 509, 145340-8 (2020).
  2. Removal of Surface Poisoning Improving Hydrogen Oxidation Performance of Pt Catalysts under Basic Conditions, J. Ohyama, K. Okubo, K. Ishikawa, T. Saida, Y. Yamamoto, S. Arai, A. Satsuma, ACS Applied Energy Materials, 3, 1854-1859 (2020).

2019年

  1. Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum, T. Okada, T. Saida, S. Naritsuka, T. Maruyama, Materials Today Communications, 19, 51-55 (2019).
  2. Single-walled carbon nanotube growth at low temperature by alcohol gas source method using Co catalyst: enhancement effects of Al2O3 buffer layer on carbon nanotube yield, T. Okada, T. Saida, S. Naritsuka, K. Fukuda, T. Maruyama, Transactions of the Materials Research Society of Japan, 44, 65-68 (2019).
  3. Vertically Aligned Single-Walled Carbon Nanotube Growth from Ir Catalysts by Alcohol Gas Source Method, T. Okada, T. Saida, S. Naritsuka, T. Maruyama, MRS Advances, 4, 225-230 (2019).
  4. Catalytic Activity of Titanium and Ruthenium Oxide Nanosheets in the Oxygen Reduction Reaction, T. Saida, M. Mashiyama, T. Maruyama, MRS Advances4, 1851-1860 (2019).

2018年

  1. Growth of single-walled carbon nanotube at a low temperature by alcohol catalytic chemical vapor deposition using Ru catalysts, T. Fujii, T. Okada, T. Saida, S. Naritsuka, T. Maruyama, MRS Advances, 3, e1-e7 (2018).
  2. In situ XANES Analysis of Co and Ni Catalysts during Single-Walled Carbon Nanotube Growth, M. Kumakura, H. Kiribayashi, T. Saida, S. Naritsuka, T. Maruyama, MRS Advances, 3, 13-18 (2018).
  3. Effect of the Crystalline Structure and Size of Group 4 and 5 Oxides to Oxygen Reduction Reaction, S. Hirano, E. Niwa, T. Maruyama, T. Saida, ECS Transactions, 85, 1585-1592 (2018).
  4.  Investigation of the Active Site for the Oxygen Reduction Reaction on the Oxide Surface Using By In-situ XAFS Method, T. Saida, S. Hirano, E. Niwa, F. Sato, T. Maruyama, ECS Transactions, 85, 865-872 (2018).

2017年

  1. Low temperature growth of single-walled carbon nanotubes from Rh catalysts, T. Maruyama, A. Kozawa, T. Saida, S. Naritsuka, S. Iijima, Carbon, 116,  128-132 (2017).
  2. Low temperature growth of single-walled carbon nanotubes from Ru catalysts by alcohol catalytic chemical vapor deposition, T. Fujii, H. Kiribayashi, T. Saida, S. Naritsuka, Takahiro Maruyama, Diamond & Related Materials, 77, 97–101 (2017) .
  3. Liquid-phase growth of few-layered graphene on sapphire substrates using SiC micropowder source, T. Maruyama, Y. Yamashita, T. Saida, S. Tanaka, S. Naritsuka, Journal of Crystal Growth, 468, 175–178 (2017) .
  4. Spectroscopic study of X-ray absorption near-edge structure of chemical states of Pt catalyst during growth of single-walled carbon nanotubes, M. Kumakura, A. Kozawa, T. Saida, S. Naritsuka, T. Maruyama, Journal of Crystal Growth, 468, 155–158 (2017) .
  5. Effects of fabrication method of Al2O3 buffer layer on Rh-catalyzed growth of single-walled carbon nanotubes by alcohol-gas-source chemical vapor deposition, H. Kiribayashi, T. Fujii, A. Kozawa, S. Ogawa, T. Saida, S. Naritsuka, T. Maruyama, Journal of Crystal Growth, 468, 114–118 (2017) .

2016年

  1. Single-walled carbon nanotube growth on SiO2/Si using Rh catalysts by alcohol gas source chemical vapor deposition, A. Kozawa, H. Kiribayashi, S. Ogawa, T. Saida, S. Naritsuka, T. Maruyama, Diamond & Related Materials, 63, 159-164 (2016).
  2. Synthesis of Carbon Composite Spheres from Graphene Oxide, T. Saida, T. Kogiso, T. Maruyama, Chemistry Letters, 45, 330-332 (2016).
  3. Low-temperature growth of single-walled carbon nanotubes using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum, H. Kiribayashi, S. Ogawa, A. Kozawa, T. Saida, S. Naritsuka, T. Maruyama, Japanese Journal of Applied Physics, 55, 06GF04-1 (2016).

2015年

  1. Synthesis of single-walled carbon nanotubes from Pd catalysts by gas source method using ethanol in high vacuum, A. Kozawa, T. Saida, S. Naritsuka, T. Maruyama, Japanese Journal of Applied Physics, 55, 01AE02-4 (2016).
  2. Growth Mechanism of Single-Walled Carbon Nanotubes from Pt Catalysts by Alcohol Catalytic CVD, T. Maruyama, H. Kondo, A. Kozawa, T. Saida, S. Naritsuka, S. Iijima, MRS Proceedings, 1752, 27-30 (2015).
  3. Single-Walled Carbon Nanotube Growth from Pt catalysts using Alcohol Gas Source Method: Comparison with Co catalysts, A. Kozawa, H. Kondo, T. Saida, S. Naritsuka, T. Maruyama, Trans. Mater. Res. Soc. Jpn.40,  405-408 (2015).

2014年

  1. Influence of the RuO2 Nanosheet Content in RuO2 Nanosheet-Pt/C Composite Toward Improved Performance of Oxygen Reduction Electrocatalysts, C. Chauvin, T. Saida, W. Sugimoto, Journal of The Electrochemical Society, 161, F318-F322 (2014).
  2. In Situ Time-Resolved XAFS of Transitional States of Pt/C Cathode Electrocatalyst in an MEA During PEFC Loading with Transient Voltages, S. Kityakarn, T. Saida, A. Sode, N. Ishiguro, O. Sekizawa, T. Uruga, K. Nagasawa, T. Yamamoto, T. Yokoyama, M. Tada, Topics in Catalysis, 57, 903-910 (2014).

2013年

  1. Structural kinetics of a Pt/C cathode catalyst with practical catalyst loading in an MEA for PEFC operating conditions studied by in situ time-resolved XAFS, N. Ishiguro, T. Saida, T. Uruga, O. Sekizawa, K. Nagasawa, K. Nitta, T. Yamamoto, S. Ohkoshi, T. Yokoyama, M. Tada, Physical Chemistry Chemical Physics, 15, 2280-2282 (2013).
  2. 固体高分子形燃料電池における電極接合体内における白金触媒の分布・化学状態の観察, 才田隆広, 唯美津木, 放射光, 26, 72-83 (2013). (解説記事)
  3. Fabrication of Ruthenium Metal Nanosheets via Topotactic Metallization of Exfoliated Ruthenate Nanosheets, K. Fukuda, J. Sato, T. Saida, W. Sugimoto, Y. Ebina, T. Shibata, M. Osada, T. Sasaki, Inorganic Chemistry, 52, 2280-2282 (2013).

2012年

  1. 4D Visualization of a Cathode Catalyst Layer in a Polymer Electrolyte Fuel Cell by 3D Laminography–XAFS, T. Saida, O. Sekizawa, N. Ishiguro, M. Hoshino, K. Uesugi, T. Uruga, S. Ohkoshi, T. Yokoyama, and M. Tada, Angewandte Chemie International Edition, 51, 10311–10314 (2012).
  2. Operando Time-Resolved X-ray Absorption Fine Structure Study for Surface Events on a Pt3Co/C Cathode Catalyst in a Polymer Electrolyte Fuel Cell during Voltage-Operating Processes, N. Ishiguro, T. Saida, T. Uruga, S. Nagamatsu, O. Sekizawa, K. Nitta, T. Yamamoto, S. Ohkoshi, Y. Iwasawa, T. Yokoyama, M. Tada, ACS catalysis, 2, 1319−1330 (2012).

2011年

  1. Methanol Adsorption and Oxidation Behavior of Various Nanostructured Ruthenium-oxides in Acidic Electrolyte, T. Saida, Y. Takasu, W. Sugimoto, Electrochemistry, 79, 371-373 (2011).

2010年

  1. Titanium oxide nanosheet modified PtRu/C electrocatalyst for direct methanol fuel cell anodes, T. Saida, N. Ogiwara, Y. Takasu, W. Sugimoto, The Journal of Physical Chemistry C, 114, 13390–13396 (2010).
  2. Synthesis of Nanosheet Crystallites of Ruthenate with a-NaFeO2-related Structure and Its Electrochemical Supercapacitor Property, K. Fukuda, T. Saida, J. Sato, M. Yonezawa, Y. Takasu, W. Sugimoto, Inorganic Chemistry, 49, 4391-4393 (2010).
  3. Enhanced activity and stability of Pt/C fuel cell anodes by the modification with ruthenium-oxide nanosheets, T. Saida, W. Sugimoto, Y. Takasu, Electrochimica Acta, 55, 857-864 (2010).

2009年

  1. Preparation of Mesoporous Pt-Ru Alloy Fibers with Tunable Compositions via Evaporation-Mediated Direct Templating (EDIT) Method Utilizing Porous Anodic Alumina Membranes, A. Takai, T. Saida, W. Sugimoto, L. Wang, Y. Yamauchi, K. Kuroda, Chemistry of Materials, 21, 3414-3423 (2009).

2006年

  1. Co-catalytic effect of nanostructured ruthenium oxide towards electro-oxidation of methanol and carbon monoxide, W. Sugimoto, T. Saida, Y. Takasu, Electrochemistry Communications, 8, 411-415 (2006).

ページトップへ